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Abstract
We exhibit a Hopf superalgebra structure of the algebra of field operators
of quantum field theory (QFT) with the normal product. Based on this
we construct the operator product and the time-ordered product as a twist
deformation in the sense of Drinfeld. Our approach yields formulae for
(perturbative) products and expectation values that allow for a significant
enhancement in computational efficiency as compared to traditional methods.
Employing Hopf algebra cohomology sheds new light on the structure of QFT
and allows the extension to interacting (not necessarily perturbative) QFT. We
give a reconstruction theorem for time-ordered products in the spirit of Streater
and Wightman and recover the distinction between free and interacting theory
from a property of the underlying cocycle. We also demonstrate how non-trivial
vacua are described in our approach solving a problem in quantum chemistry.
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1. Introduction

The purpose of this paper is to present a new approach to the algebraic and combinatorial
structures at the heart of quantum field theory (QFT). This approach has merits on the practical
as well as on the conceptual side. On the practical side, it allows for a major computational
enhancement based on an efficient description of the combinatorics and on non-recursive
closed formulae. On the conceptual side, it gives new insights into the algebraic structure of
QFT. We evidence this through applications to non-perturbative QFT and non-trivial vacua.

The starting point of our approach is the identification of a Hopf algebraic structure at
the core of QFT. That is, the algebra of field operators with the normal product is a Hopf
superalgebra. This means that besides the product there is a coproduct that describes,
intuitively speaking, the different ways in which a product of field operators might be
partitioned into two sets. Indeed, it is this coproduct that plays the key role in a closed
description of combinatorial structures and that allows for computationally efficient algorithms.
Another key structure of the Hopf superalgebra is the counit. This turns out to describe the
standard vacuum expectation value. Algebraically, this Hopf superalgebra is the graded
symmetric Hopf algebra (described in detail in appendix A.3, see also [1, appendix 2]). The
conceptual origin of this Hopf superalgebra is rather simple. Identifying the normal ordered
products with functionals on field configurations, the coproduct is induced by the linear
addition of fields.

The second main step consists in identifying the standard canonical quantization with
a twist in the sense of Drinfeld [2]. More precisely, the operator product emerges as a
twist deformation of the normal product. As is common we deal here at first with the free
QFT. The twist is induced by a Laplace pairing which in turn is determined by a suitable
propagator. Furthermore, the time-ordered product can be obtained similarly as a direct twist
deformation of the normal product. In this case, the Laplace pairing is determined by the
Feynman propagator. Since vacuum expectation values of time-ordered products are the main
ingredients of physical scattering amplitudes this allows the use of our methods in actual
calculations of physical quantities.

It is one of the basic facts in quantum field theory that Wick’s theorem relates normal
and time-ordered correlation functions [3–5]. It was only recently noted by Fauser that this
transformation can be advantageously described in Hopf algebraic terms [6–8]. This is indeed
a crucial ingredient of our construction, which allows us to prove that the twists yield the
desired products. In particular, we show that the Hopf algebraic Wick transformation can be
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applied to yield the operator product from the normal product in a way analogous as for the
time-ordered product.

Other aspects of our approach described so far are also present in the literature in different
guises. Oeckl used the (dual of the) present Hopf algebra structure to generalize QFT [9, 10]
to quantum group symmetries and the twist to describe QFT on noncommutative spaces [11].
Borcherds defined vertex algebras with quantum group methods [12, 13]. In particular, he
uses a construction similar to the twist in a related context. The research of the present paper
was initiated by Brouder [14] and a preliminary presentation of parts of this work was given
in [15].

The closed formulae emerging in our framework facilitate highly efficient computations
of products and expectation values. This is mainly due to the heavy use of the coproduct
structure. Indeed, this is well known in combinatorics where Hopf algebraic methods are
established for this purpose. We know from computer algebra calculations that precisely the
techniques employed enhance performance and that in a well defined sense no algorithm can
come up with fewer terms, see [16, 17]. While the twisted products described so far are the
products of the free QFT our framework is naturally compatible with the usual perturbation
theory and thus applicable to it. This implies that the computational advantages directly apply
to perturbative QFT.

The third step consists in exploiting the Hopf algebra cohomology theory due to Sweedler,
which underlies the twisted product [18]. (In that work twisted products of the type used here
were also introduced for the first time.) Besides affording conceptual insight this yields
immediate practical benefits. Among these is the realization of the time-ordering prescription
of QFT as an algebra isomorphism. This in turn can be used on the computational side.

The cohomological point of view affords a further extension of our framework.
Significantly, twisted products cannot only be defined with Laplace pairings, but with
2-cocycles, of which Laplace pairings are only a special case. Remarkably, it turns out
that 2-cocycles that are not Laplace pairings lead to (non-perturbatively described) interacting
QFTs. Moreover, any QFT (with polynomial fields) can be obtained in this way. A QFT is
free if and only if the 2-cocycle is a Laplace pairing.

A further application of the cohomology that we develop is to non-trivial vacua. We
show that changing the choice of vacuum can also be encoded through a twist. Indeed, it
turns out that there is a ‘duality’ or correspondence between the choice of vacuum and that of
product. We exemplify this result by solving a problem posed by Kutzelnigg and Mukherjee
[19] regarding ‘adapted normal products’ in quantum chemistry. While they were able to
give only examples for low orders, our framework yields closed formulae for all orders. Our
method is capable of describing condensates too, as we know from [20].

Although we do not develop this point of view in the present paper, a twist in the sense used
here is automatically an (equivariant) deformation quantization. Indeed, this was one of the
original motivations for Drinfeld to introduce this concept [21]. This means that our approach
is thus inherently connected to the deformation quantization approach to QFT. This approach
starts also with the normal ordered product and views the other products as deformations of
it. See the recent paper by Hirshfeld and Henselder [22].

The paper is roughly divided into three parts. The first, consisting of section 2, starts by
introducing a few essential mathematical concepts. Then, the Hopf algebra structure of the
normal ordered field operators is developed. Next, the operator and time-ordered products
are constructed as twisted products induced by Laplace pairings. We finish the section with
closed formulae for Wick expansions, the various products and expectation values showing the
practical efficiency of the framework. This part of the paper is intended for a broad audience
and should be readable without prior familiarity with Hopf algebras.
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The second part of the paper consists of section 3. Here we go deeper into the underlying
mathematics, starting with a brief review of Hopf algebra cohomology and Drinfeld twisting.
Then we turn to the implications for QFT. In particular, we describe the cohomological
understanding of the operator and time-ordered product as twisted products. Among other
practical consequences we derive the time-ordering operation as an algebra isomorphism.

The third part of the paper presents further results emerging from the cohomological
insights. It consists of sections 4 and 5. In section 4 interactions are treated. Firstly, we show
that our framework is compatible with perturbation theory and thus allows the application of
our methods there. Secondly, we consider general (and not necessarily perturbative) quantum
field theory and show that our framework naturally extends to it. In particular, we present the
reconstruction theorem that allows us to describe any (linear and polynomial) QFT through a
2-cocycle. In section 5, we show how choosing non-trivial vacua can be naturally expressed
in our framework. Moreover, we demonstrate the efficient solution of a problem arising in
quantum chemistry with our approach.

After conclusions and outlook the paper ends with two appendices. Appendix A gives
some elementary definitions on Hopf superalgebras and in particular the graded symmetric
Hopf superalgebra that plays the crucial role in this paper. The terminology of Hopf
∗-superalgebras is not unique and even in general incompatible between different sources.
So a further value of this appendix is that it collects in a coherent and compatible way notions
scattered in the literature. Appendix B consists firstly of a short description of the cohomology
groups in the bosonic case and secondly of the more technical proofs of propositions and
lemmas appearing in the main text.

We refer readers who wish to know more about Hopf algebras and quantum group theory
to [23] and [24]. The latter reference is particularly suitable for the cohomology theory and
the twist construction.

2. Free quantum field theory

2.1. Mathematical basis

We start in this section by introducing a few mathematical concepts that will be required
throughout the paper. These are, apart from Hopf (super)algebras, the Laplace pairing and the
twisted product. It should be possible even for the reader without previous experience with
Hopf algebras to follow the main steps of section 2. Indeed, a first reading should be possible
without paying too much attention to the details of definitions.

2.1.1. Hopf ∗-superalgebra. Recall that a Hopf algebra H, besides being an associative
algebra with a unit, has a coassociative coproduct � : H → H ⊗ H , a counit ε : H → C and
an antipode γ : H → H , satisfying compatibility conditions. By definition the coproduct
of an element a of H can always be written as a (non-unique) linear combination of the
form �a = ∑

i a
′
i ⊗ a′′

i . In order to avoid the proliferation of indices it is customary
to use Sweedler’s notation for this, i.e. we write �a = ∑

a(1) ⊗ a(2). Due to the
coassociativity Sweedler’s notation extends unambiguously to multiple coproducts as follows:∑

(a(1))(1) ⊗ (a(1))(2) ⊗ a(2) = ∑
a(1) ⊗ (a(2))(1) ⊗ (a(2))(2) = ∑

a(1) ⊗ a(2) ⊗ a(3) etc.
A superalgebra A is a Z2-graded algebra so that |ab| = |a| + |b| modulo 2 where |a|

denotes the parity of the element a, |a| = 0 if it is even (bosonic) and |a| = 1 if it is odd
(fermionic). A Hopf superalgebra is a superalgebra with unit and Z2-graded coproduct, counit
and antipode. A ∗-(super)algebra is a (super)algebra A with an antilinear map ∗ : A → A
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such that (ab)∗ = b∗a∗. A Hopf ∗-superalgebra is a Hopf superalgebra and ∗-superalgebra
where the ∗-structure is compatible with coproduct, counit and antipode.

We refer the reader who is not familiar with these notions or wishes to recall their details
to appendix A, where the complete definitions are given on an elementary level.

2.1.2. Laplace pairing. We introduce now the concept of Laplace pairing which is relevant
to interpret Wick’s theorem in terms of Hopf superalgebras.

Let H be a Hopf superalgebra that we require to be graded cocommutative. That is,
the coproduct satisfies a(1) ⊗ a(2) = (−1)|a(1)||a(2)|a(2) ⊗ a(1). A pairing on H is a linear map
(·|·) : H ⊗ H → C. It is called even if (a|b) = 0 when the parities of a and b are different.
A Laplace pairing5 on H is an even pairing on H such that the product and the coproduct are
dual in the sense that

(aa′|b) =
∑

(−1)|a
′||b(1)|(a|b(1))(a

′|b(2)) (1)

(a|bb′) =
∑

(−1)|a(2)||b|(a(1)|b)(a(2)|b′) (2)

and the unit and counit are dual as follows:

(1|a) = (a|1) = ε(a). (3)

2.1.3. Twisted product. A Laplace pairing on H can be used to deform the product of H.
Sweedler [18] defined the twisted product on H, which we denote by ◦, as6

a ◦ b =
∑

(−1)|a(2)||b(1)|(a(1)|b(1))a(2)b(2). (4)

The twisted product ◦ is associative, and 1 is also the unit for ◦. As we shall see later, this
twisted product yields an elegant way to write Wick’s theorem. From the mathematical point
of view, this arbitrary seeming definition can be understood as a special case of the more
fundamental Drinfeld twist discussed in section 3.2.

Note also that the twisted product is not compatible with the coproduct: in general
�(a ◦ b) �= ∑

(−1)|b(1)||a(2)|(a(1) ◦ b(1)) ⊗ (a(2) ◦ b(2)).

2.2. The Hopf superalgebra of creation and annihilation operators

In this section, we define the Hopf superalgebra of creation and annihilation operators. The
fermion and boson creation and annihilation operators will be treated in a unified way. Normal
products of creation and annihilation operators form a well-known graded commutative
superalgebra, called the symmetric superalgebra (see appendix A). In this section, we define a
coproduct and a counit which are compatible with the normal product, and we equip the normal
products of operators with the structure of a Hopf superalgebra. The Hopf superalgebra of
creation and annihilation operators will be used to define the Hopf superalgebra of quantum
fields.

We first denote by ϕ(x; s) the solutions of the classical field equations (e.g. the classical
Klein–Gordon, Dirac or Maxwell equations). The solution ϕ(x; s) is a function of the

5 This name was given by Rota some time ago [25, 26], because equations (1) and (2) are an elegant way of writing
the Laplace identities for determinants. Equation (1) is called expansion by rows and equation (2) expansion by
columns. They express the determinant in terms of minors (see [27], p 26 and [28], p 93) and were derived by Laplace
in 1772 [29].
6 Sweedler considered only the bosonic case. He called the product a crossed product and his definition was
somewhat more general (in a different direction).
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spacetime variable x and s indexes the solutions of the classical field equations. In the
vacuum, s is the 3-momentum k for scalar fields. For Dirac fields there are positive energy
solutions ϕ>(x, s) with s = (k, α) and α = 1, 2 for up and down spin states and negative
energy solutions ϕ<(x, s) with s = (k, α) and α = 1, 2 for up and down spin states. For
the classical field equations in an external potential, s is a discrete index for the bound states
and a continuous index for the scattering states. For x = (0, r), the set of functions ϕ(x; s)

is assumed to form a suitable space of functions of r. The functions ϕ(x; s) will be used to
define quantum fields.

2.2.1. The superalgebra structure. The creation and annihilation operators are denoted
by a†(s) and a(s), respectively. They create and annihilate a particle in the state s.
They are operators acting on a Fock space F and their precise definition is given in [30],
p 218. The normalized state of F corresponding to no particles is called the vacuum and
denoted by |0〉. The parity of these operators is |a(s)| = |a†(s)| = 1 for a fermion field
and |a(s)| = |a†(s)| = 0 for a boson field. The operator product of two operators u and v is
written uv. The (anti)commutation relations among creation operators and among annihilation
operators of bosons (fermions) [31] can be summarized as

a(s)a(s ′) = (−1)|a(s)||a(s ′)|a(s ′)a(s)

a†(s)a†(s ′) = (−1)|a
†(s)||a†(s ′)|a†(s ′)a†(s).

(5)

These equations mean that two annihilation operators or two creation operators commute for
bosons, anticommute for fermions and commute for a boson and a fermion.

The superalgebra ÂN of normal products is generated as a vector space by products
of creation operators on the left of products of annihilation operators. For example
u = a†(s1) · · · a†(sm)a(sm+1) · · · a(sm+n) is an element of ÂN . The parity of u is |u| =
|a†(s1)| + · · · + |a†(sm)| + |a(sm+1)| + · · · + |a(sm+n)| modulo 2. The element given by
m = 0 and n = 0 in this example is the unit operator denoted by 1. The product in
ÂN is the normal product. In quantum field theory, the normal product of two elements u
and v is denoted by :uv:. Since this notation becomes cumbersome when we manipulate
various products of several fields, we prefer to denote the normal product by u∨v, which
is the standard mathematical notation for a graded-commutative product. The normal
product is defined by a†(s)∨a†(s ′) = a†(s)a†(s ′), a†(s)∨a(s ′) = a†(s)a(s ′), a(s)∨a†(s ′) =
(−1)|a(s)||a†(s ′)|a†(s ′)a(s), a(s)∨a(s ′) = a(s)a(s ′) and extended to ÂN by associativity and
linearity. From the definition of the normal product and the relations (5), we see that if u and
v are in ÂN , u∨v = (−1)|u||v|v∨u. That is, the normal product is graded commutative. Hence,
the superalgebra ÂN is a graded-commutative associative superalgebra with unit 1. These
results can be summarized in the following proposition:

Proposition 2.1. If V̂ is the vector space generated by a(s) and a†(s) (for all s), the
superalgebra ÂN of normal products has the structure of the symmetric superalgebra Sym(V̂ ).

The symmetric superalgebra Sym(V̂ ) is described in appendix A. If the theory contains
bosons and fermions the vector space V̂ generated by a(s) and a†(s) for all s can be written as
V̂ = V̂0 ⊕ V̂1, where V̂0 is generated by the boson operators and V̂1 by the fermion operators.

From appendix A, we know that Sym(V̂ ) has the structure of a Hopf superalgebra. Thus,
the superalgebra of creation and annihilation operators has a Hopf superalgebra structure
that will be discussed in the following section. For later convenience, we distinguish the
superalgebra ÂN of creation and annihilation operators without the full Hopf structure, and
the Hopf superalgebra of creation and annihilation operators, that we denote by Ĥ .
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2.2.2. The Hopf ∗-superalgebra structure. Starting from the Hopf superalgebra Sym(V̂ ),
we see that the coproduct of the Hopf superalgebra Ĥ of creation and annihilation operators
is defined by �1 = 1 ⊗ 1,�a(s) = a(s) ⊗ 1 + 1 ⊗ a(s),�a†(s) = a†(s) ⊗ 1 + 1 ⊗ a†(s) on
V̂ and extended to Ĥ by �(u∨v) = ∑

(−1)|u(2)||v(1)|(u(1)∨v(1)) ⊗ (u(2)∨v(2)). For example, if
a = a(s), b = a(s ′) and c = a(s ′′),

�(a∨b) = (a∨b) ⊗ 1 + a ⊗ b + (−1)|a||b|b ⊗ a + 1 ⊗ (a∨b)

�(a∨b∨c) = 1 ⊗ a∨b∨c + a ⊗ b∨c + (−1)|a||b|b ⊗ a∨c + (−1)|a||c|+|b||c|c ⊗ a∨b

+ a∨b ⊗ c + (−1)|b||c|a∨c ⊗ b + (−1)|a||b|+|a||c|b∨c ⊗ a + a∨b∨c ⊗ 1.

In general

�(u1∨ · · · ∨un) =
∑

(−1)F u1
(1)∨ · · · ∨un

(1) ⊗ u1
(2)∨ · · · ∨un

(2)

for any u1, . . . , un ∈ Ĥ and with F = ∑n
k=2

∑k−1
l=1

∣∣uk
(1)

∣∣∣∣ul
(2)

∣∣.
In particular, if a1, . . . , an are creation or annihilation operators, the coproduct of

a1∨ · · · ∨an is given by equation (36) of appendix A.3.
The counit of Ĥ is defined by ε(1) = 1, ε(a(s)) = 0 and ε(a†(s)) = 0 and

extended to Ĥ by ε(u∨v) = ε(u)ε(v) for any u and v in Ĥ . Therefore, ε(u) = 0 if
u = a†(s1) · · · a†(sm)a(sm+1) · · · a(sm+n) for m > 0 or n > 0. The relation between Hopf
algebra and quantum field concepts is strengthened by the following:

Proposition 2.2. For any normal product, i.e. any element u ∈ Ĥ , the counit is equal to the
vacuum expectation value: ε(u) = 〈0|u|0〉.

To show this, we evaluate ε(u) and 〈0|u|0〉 for all elements of a basis of Ĥ . The
proposition is true for the unit because ε(1) = 1 = 〈0|1|0〉. Take now a basis element of
Ĥu = a†(s1) · · · a†(sm)a(sm+1) · · · a(sm+n) for m > 0 or n > 0. Then ε(u) = 0 = 〈0|u|0〉.
The result follows for all elements of Ĥ by linearity of the counit and of the vacuum expectation
value. This relation between the counit and the expectation value over the vacuum was already
pointed out in [6].

To complete the description of the Hopf superalgebra Ĥ , we define its antipode by
γ (a#(s1)∨ · · · ∨a#(sn)) = (−1)na#(s1)∨ · · · ∨a#(sn), where a#(si) stands for a†(si) or a(si).
Moreover, Ĥ has a ∗-structure generated by a(s)∗ = a†(s).

2.3. The Hopf superalgebra of field operators

The operators used in the superalgebra ÂN of normal products are independent of space and
time, they are indexed by the solutions of the classical equation. Now we introduce space- and
time-dependent field operators for Dirac and scalar fields. An excellent description of field
operators can be found in [30].

2.3.1. The field operators. To define the Dirac field operator, we need to split the set
of solutions of the Dirac equation into two groups, the positive energy states ϕ>(x; s) and
the negative energy states ϕ<(x, s). The solutions with positive energy are ϕ>(x; n) with
energy En < m (where m is the electron mass) for bound states and ϕ>(x; k, α) with energy
ωk =

√
k · k + m2 for continuum states. The solutions with negative energy are assumed to

be always continuum states ϕ<(x; k, α) with energy −ωk .
The Dirac field operator is defined by [31]

ψ(x) =
∑

n

ϕ>(x; n)bn +
∫

dµ(k)

2∑
α=1

ϕ>(x; k, α)bα(k) + ϕ<(x; k, α)d†
α(k).
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In this expression, dµ(k) = m/(8π3ωk)dk. Its Dirac adjoint is

ψ(x) =
∑

n

ϕ̄>(x; n)b†
n +

∫
dµ(k)

2∑
α=1

ϕ̄>(x; k, α)b†
α(k) + ϕ̄<(x; k, α)dα(k)

with ϕ̄ = ϕ†γ 0 [31], where ϕ† is the adjoint of the spinor ϕ. The creation and annihilation
operators are b

†
n and bn for bound states, b†

α(k) and bα(k) for positive energy scattering states
and d†

α(k) and dα(k) for negative energy scattering states.
For a neutral scalar field φ(x) in the vacuum, the construction is simpler

φ(x) =
∫

(ϕ(x; k)a(k) + ϕ†(x; k)a†(k))dµ(k).

2.3.2. The Hopf superalgebra of fields. We define V as the vector space generated by the
free fields (e.g. ψ(x), ψ(x) and Aµ(x) for all x in quantum electrodynamics). Then the Hopf
superalgebra Ĥ = Sym(V̂ ) extends to a Hopf superalgebra structure on H = Sym(V ). The
normal product of creation and annihilation operators extends to a normal product of fields,
also denoted by ∨. For example

φ(x)∨φ(y) =
∫

dµ(k)dµ(q)(ϕ†(x; k)ϕ(y; q)a†(k)∨a(q) + ϕ†(x; k)ϕ†(y; q)a†(k)∨a†(q)

+ ϕ(x; k)ϕ(y; q)a(k)∨a(q) + ϕ(x; k)ϕ†(y; q)a(k)∨a†(q)).

The coproduct is extended from the coproduct of Ĥ . This extension uses the fact that the
transformation from V̂ to V is linear. For example

�Aµ(x) = Aµ(x) ⊗ 1 + 1 ⊗ Aµ(x)

�ψ(x) = ψ(x) ⊗ 1 + 1 ⊗ ψ(x)

�(ψ(x)∨ψ(y)) = ψ(x)∨ψ(y) ⊗ 1 + 1 ⊗ ψ(x)∨ψ(y) + ψ(x) ⊗ ψ(y) − ψ(y) ⊗ ψ(x).

The counit of H is extended from the counit of Ĥ . Thus, ε(φ(x)) = ε(ψ(x)) = ε(ψ(x)) = 0.
The antipode is defined by γ (u) = (−1)nu if u is the normal product of n elements of V ,
and extended to H by linearity. H is a graded commutative and graded cocommutative Hopf
superalgebra.

The ∗-structure of quantum field operators is deduced from the ∗-structure on creation
and annihilation operators a(s)∗ = a†(s). It gives φ(x)∗ = φ(x) for a neutral scalar field and
ψ(x)∗ = ψ †(x) = ψ(x)γ 0 and ψ(x)∗ = γ 0ψ(x) for Dirac fields. The ∗-structure is related
to the charge conjugation operator C of Dirac fields by Cψ(x)C† = iγ 2ψ(x)∗ (see [31]).

2.4. Operator and time-ordered product of field operators

In this section we show that, by properly choosing the Laplace pairing, we can twist the normal
product into the operator product or the time-ordered product. The twisted product on Ĥ or H
is given by equation (4). From the coproduct of these Hopf superalgebras and the definition
(4) of the twisted product, we obtain the following simple examples, valid for a, b and c in V̂

(or V ).
a ◦ b = a∨b + (a|b)

(a∨b) ◦ c = a∨b∨c + (−1)|b||c|(a|c)b + (−1)|a||b|+|a||c|(b|c)a
a ◦ (b∨c) = a∨b∨c + (−1)|b||c|(a|c)b + (a|b)c

a ◦ b ◦ c = a∨b∨c + (a|b)c + (−1)|b||c|(a|c)b + (−1)|a||b|+|a||c|(b|c)a.

(6)

Now we are going to specify the Laplace pairings relevant to the algebra of normal products
Ĥ and the algebra of fields H.
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2.4.1. The algebra of operator products ÂO . We call Wightman pairing the Laplace pairing
defined as follows. For a scalar field in the vacuum the Wightman pairing is

(a(k)|a†(q))+ = δ(k − q)

ρ(k)
(7)

where ρ(k) = (2π)−3m/
√

k · k + m2, all the other pairings being zero. For Dirac fields we
have (

bn

∣∣b†
p

)
+ = δnp(

bα(k)
∣∣b†

β(q)
)

+ = (
dα(k)

∣∣d†
β(q)

)
+ = δαβ

δ(k − q)

ρ(k)

all the other pairings being zero. This Wightman pairing twists the normal product into the
operator product and the algebra ÂN becomes the algebra ÂO . But we need first to prove the
following proposition:

Proposition 2.3. The twisted product defined by the Wightman pairing is equal to the operator
product: for any elements u and v of ÂN , u ◦ v = uv.

For the case of a scalar field, we are going to show that the operator product of two
elements u and v of ÂN is equal to the twisted product of these elements with the Wightman
pairing (7). The proof for Dirac fields is analogous.

For two operators a and b, where a = a(s) or a = a†(s) and b = a(s) or b = a†(s ′),
equation (6) tells us that a ◦ b = a∨b + (a|b)+. On the other hand we know from Wick’s
theorem [31] that the operator product satisfies ab = a∨b + 〈0|ab|0〉 (recall that a∨b = :ab:).
The Wightman pairing was defined precisely so that (a|b)+ = 〈0|ab|0〉, thus a ◦ b = ab. This
equality is valid for any elements a and b in V̂ , the vector space generated by a(s) and a†(s).

We must now prove that uv = u ◦ v for any u and v in ÂN . This is done by using
Wick’s theorem [3]. Wick’s theorem is very well known, so we recall it only briefly. It
states that the operator product of some elements of V̂ is equal to the sum over all possible

pairs of contractions (see e.g. [32], p 209; [33], p 261; [34] p 85). A contraction7 ab is the

difference between the operator product and the normal product. ab = ab − a∨b, so that

ab = 〈0|ab|0〉 = (a|b)+.
If u = a1∨ · · · ∨an, Wick’s theorem for bosons is proved recursively from the following

identity [3]:

ub = u∨b +
n∑

j=1

(aj |b)+a1∨ · · · ∨aj−1∨aj+1∨ · · · ∨an. (8)

Thus, to show that u ◦ b = ub we must recover equation (8) from our definition. In other
words, we must prove

u ◦ b = u∨b +
n∑

j=1

(aj |b)+a1∨ · · · ∨aj−1∨aj+1∨ · · · ∨an. (9)

To show this, we make a recursive proof with respect to the degree of u. We recall that an
element has degree k if it can be written as the normal product of k creation or annihilation
operators (see section A.1). We use the definition (4) of the twisted product and the fact that
�b = b ⊗ 1 + 1 ⊗ b to find

u ◦ b = u∨b +
∑

(u(1)|b)+u(2). (10)

7 Contractions were first used by Houriet and Kind [35].
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The Wightman pairing (u(1)|b)+ is zero if u(1) is not of degree 1. According to equation (36)
for �u, this happens only for the (1, n − 1) shuffles. By definition, a (1, n − 1) shuffle is a
permutation σ of (1, . . . , n) such that σ(2) < · · · < σ(n), and the corresponding terms in the
coproduct of �u are

n∑
j=1

aj ⊗ a1∨ · · · ∨aj−1∨aj+1∨ · · · ∨an.

Thus, we recover (9) from the Laplace identity (10) and the twisted product of u and b is the
operator product of u and b. By linearity of the twisted and operator products, this can be
extended to any element of ÂN and we have u ◦ b = ub for any u in ÂN and any b ∈ V̂ . A
similar argument leads to

a ◦ u = au (11)

for any a in V̂ and any u in ÂN . Now we proceed by induction. Assume that u ◦ v = uv

for any v ∈ ÂN and for u of degree k � n. We take now an element u of degree n and we
calculate (a∨u) ◦ v where a is in V̂ . We use a∨u = a ◦ u − ∑

(a|u(1))+u(2) and we write

(a∨u) ◦ v = (a ◦ u) ◦ v −
∑

(a|u(1))+u(2) ◦ v

= a ◦ (u ◦ v) −
∑

(a|u(1))+u(2) ◦ v

= a ◦ (uv) −
∑

(a|u(1))+u(2)v = auv −
∑

(a|u(1))+u(2)v

by associativity of the twisted product and because of the recursion hypothesis and
equation (11). By associativity of the operator product this can be rewritten

(a∨u) ◦ v =
(
au −

∑
(a|u(1))+u(2)

)
v =

(
a ◦ u −

∑
(a|u(1))+u(2)

)
v

= (a∨u)v.

Therefore u ◦ v = uv if u is of degree n + 1. By induction, this proves that u ◦ v = uv for an
element u of any degree. By linearity, this shows that u ◦ v = uv for any u and v in ÂN and
the property is proved for bosons.

Adding the proper signs, the same proof shows that u ◦ v = uv if ÂN contains boson and
fermion fields.

2.4.2. Operator twisting of the algebra of fields. The Wightman pairing (|)+ on the algebra
ÂN of normal products extends to a Laplace pairing (|)+ on the algebra of fields AN , that we
also call the Wightman pairing. For scalar fields we obtain

(φ(x)|φ(y))+ =
∫

ϕ(x; k)†ϕ(y; k)dµ(k)

which can again be defined as (φ(x)|φ(y))+ = 〈0|φ(x)φ(y)|0〉. The Wightman pairing for
the product of Dirac fields is

(ψ(x)|ψ(y))+ =
∑

n

ϕ>(x; n)ϕ̄>(y; n) +
2∑

α=1

∫
ϕ>(x; k, α)ϕ̄>(y; k, α)dµ(k)

(ψ(x)|ψ(y))+ =
2∑

α=1

∫
ϕ<(x; k, α)ϕ̄<(y; k, α)dµ(k)

(ψ(x)|ψ(y))+ = 0 (ψ(x)|ψ(y))+ = 0.
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For scalar fields in the vacuum this gives us

(φ(x)|φ(y))+ =
∫

dk
(2π)32ωk

e−ip·(x−y)

=
∫

d4p

(2π)3
δ(p2 − m2)θ(p0) e−ip·(x−y).

For Dirac fields in the vacuum

(ψ(x)|ψ(y))+ =
∫

dp

(2π)3
δ(p2 − m)θ(p0)(γ · p + m) e−ip·(x−y)

(ψ(x)|ψ(y))+ = −
∫

dp

(2π)3
δ(p2 − m)θ(−p0)(γ · p + m) e−ip·(x−y).

The proof of proposition 2.3 can be repeated to show that

Proposition 2.4. The twisted product defined by the Wightman pairing is equal to the operator
product of fields: for any elements u and v of AN, u ◦ v = uv.

Therefore, the Wightman pairing twists the algebra AN of normal products of fields into
the algebra AO of operator products of fields. Note that the Dirac operator D = iγ · ∂x − m

annihilates the Wightman pairing: D(ψ(x)|ψ(y))+ = D(ψ(x)|ψ(y))+ = 0.

2.4.3. Time-ordered twisting of the algebra of fields. We call Feynman pairing the Laplace
pairing defined by

(φ(x)|φ(y))F = θ(x0 − y0)(φ(x)|φ(y))+ + θ(y0 − x0)(φ(y)|φ(x))+

for scalar fields and

(ψξ (x)|ψξ ′(y))F = −(ψξ ′(y)|ψξ(x))F

= θ(x0 − y0)(ψξ (x)|ψξ ′(y))+ − θ(y0 − x0)(ψξ ′(y)|ψξ(x))+

(ψ(x)|ψ(y))F = 0 (ψ(x)|ψ(y))F = 0

for Dirac fields. The Feynman pairing is proportional to the Feynman propagator:
(ψ(x)|ψ(y))F = iSF (x − y). In the vacuum

(ψ(x)|ψ(y))F = i
∫

dk

(2π)4

e−ik·(x−y)

γ · k − m + iε
.

The action of the Dirac operator on the Feynman pairing is D(ψ(x)|ψ(y))F = iδ(x − y).
The time-ordered product satisfies the same Wick theorem as the operator product [36].

Thus the same proof can be used to show

Proposition 2.5. The twisted product defined by the Feynman pairing is equal to the time-
ordered product: for any elements u and v of ÂN , u ◦ v = T (uv).

Therefore, the Feynman pairing twists the algebra AN of normal products of fields into the
algebra AT of time-ordered products of fields. We saw that the twisted product is associative.
Thus, the time-ordered product of free fields is associative. As far as we know, this property
of time-ordered products was never pointed out explicitly.
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2.4.4. ∗-structure and real Laplace pairings. The ∗-structure satisfies (u∨v)∗ = v∗∨u∗. A
Laplace pairing is called real (see [24], p 55) when the corresponding twisted product satisfies
(u ◦ v)∗ = v∗ ◦ u∗. In this section, we investigate the properties of a real Laplace pairing.
First, it can be shown that a Laplace pairing is real if and only if (u|v)∗ = (v∗|u∗).

In the case of ÂO , it can be checked that the Wightman pairing (|)+ is real, because
the density ρ(k) is real. For a neutral scalar field, φ(x)∗ = φ(x) and (φ(x)|φ(y))∗+ =
(φ(y)|φ(x))+. Thus, the Wightman pairing is real. Similarly, for a Dirac field (ψ(x)|ψ(y))∗+ =
(ψ(y)∗|ψ(x)∗)+. Thus, these Wightman pairings are real and we have (uv)∗ = v∗u∗, which
is the expected behaviour of operator products.

The Feynman pairing (|)F corresponding to the time-ordered product is not real.
However, the ∗-operation is still important because it is related to the time-reversal symmetry
(see section 3.3.4).

2.4.5. Closed formulae for Wick expansion and expectation values. We present here the
application of the Hopf algebra approach to the calculation of iterated products and their
vacuum expectation values. Similar results were obtained for the bosonic case in [37]. To state
these results we first need to define the powers �k of the coproduct as �0a = a,�1a = �a

and �k+1a = (id⊗· · ·⊗ id⊗�)�ka. Their action is denoted by �ka = ∑
a(1) ⊗· · ·⊗a(k+1).

For the vacuum expectation values we have now

Proposition 2.6. For u1, . . . , un in Ĥ or H we have

ε(u1 ◦ · · · ◦ un) =
∑
(u)

(−1)Fn

n∏
j=2

j−1∏
l=1

(
ul

(j−1)

∣∣uj

(l)

)
(12)

where the index (u) means that we sum over the required powers of the coproducts of u1, . . . , un

and where

Fn =
n∑

i=3

i−1∑
j=1

i−1∑
k=2

k−1∑
l=1

∣∣uk
(j)

∥∥ui
(l)

∣∣.
In the case of the time-ordered product of quantum fields, the right-hand side of

equation (12) is written as a sum of Feynman diagrams. Our formula is also valid for
the vacuum expectation value of the operator product of fields. An example of the application
of this formula to scalar fields was given in [37].

For the Wick expansion of operator products or time-ordered products of fields, we have
the

Proposition 2.7. For u1, . . . , un in Ĥ or H we have

u1 ◦ · · · ◦ un =
∑
(u)

(−1)F(u)ε
(
u1

(1) ◦ · · · ◦ un
(1)

)
u1

(2)∨ · · · ∨un
(2) (13)

where

F(u) =
n∑

k=2

k−1∑
l=1

∣∣uk
(1)

∥∥ul
(2)

∣∣. (14)

In perturbative quantum field theory, this equation is used for the calculation of the S-
matrix: the product ◦ is then the time-ordered product and u1 = · · · = un = L, where L is
the interaction Lagrangian of the theory. As an example, we consider the Lagrangian for the



Quantum field theory and Hopf algebra cohomology 5907

φn theory: L(x) = φn(x), where φn(x) denotes the normal product of n fields φ(x). The
binomial formula gives us the coproduct of L(x):

�φn(x) =
n∑

k=0

(
n

k

)
φk(x) ⊗ φn−k(x)

and equation (13) becomes, in the usual notation

T (φn1(x1) · · · φnm(xm)) =
n1∑

i1=0

· · ·
nm∑

im=0

(
n1

i1

)
· · ·

(
nm

im

)
〈0|T (φi1(x1) · · · φim(xm))|0〉:φn1−i1(x1) · · · φnm−im(xm):

where T is the time-ordering operator and :u: stands for the normal product. This equation
can be found, for example in [38, 39]. Our equation (13) is more compact and much more
general: it is valid for bosons and fermions, for products of any elements u of H (and not only
of φn(x)), for operator products as well as time-ordered products.

The proof of these formulae was given in [37] for bosonic fields, so we leave to the reader
the determination of the additional signs. However, we give the main lemmas that lead to
them.

Lemma 2.8. For u1, . . . , un and v1, . . . , vm in Ĥ or H we have

(u1∨ · · · ∨un|v1∨ · · · ∨vm) =
∑
(u)(v)

(−1)Fnm

n∏
i=1

m∏
j=1

(
ui

(j)

∣∣vj

(i)

)
(15)

where the sign (−1)Fnm is given by

Fnm =
n∑

i=1

m∑
j=1

∑
(u)

(∣∣ui
(j)

∣∣2
+

i∑
k=1

j∑
l=1

∣∣ui
(j)

∣∣∣∣uk
(l)

∣∣) .

To obtain this equation, we used the fact that the Laplace pairing is even, so that∣∣ui
(j)

∣∣ = ∣∣vj

(i)

∣∣. Two special cases are important [26]: (i) when all ui and vj are in V̂ or
V and are fermionic

(u1∨ · · · ∨un|v1∨ · · · ∨vm) = δm,n(−1)n(n−1)/2 det(ui |vj )

and (ii) when all ui and vj are in V̂ or V and bosonic

(u1∨ · · · ∨un|v1∨ · · · ∨vm) = δm,n perm(ui |vj )

where perm(ui |vj ) is the permanent of the matrix (ui |vj ).
To calculate iterated products recursively we need the following identity:

Lemma 2.9. For u1, . . . , un in Ĥ or H,

�(u1 ◦ · · · ◦ un) =
∑
(u)

(−1)F(u)u1
(1) ◦ · · · ◦ un

(1) ⊗ u1
(2)∨ · · · ∨un

(2) (16)

where F(u) is given by equation (14).

These results illustrate the power of Hopf algebra methods to derive explicit expressions
in quantum field theory.
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3. Cohomology

In this section, we uncover some of the deeper mathematical structures that lie behind the
twist construction of the time-ordered product and the operator product. Principally, these
are Sweedler’s Hopf algebra cohomology and the Drinfeld twist. These new insights in turn
give us new tools for quantum field theory that will be exploited subsequently to describe
interactions (section 4) and non-trivial vacua (section 5).

3.1. Cohomology of Hopf superalgebras

In this section, we review the basics of Sweedler’s cohomology theory of cocommutative Hopf
algebras [18] generalized by Majid [24]. We adapt it here to the Hopf superalgebra case.

3.1.1. Convolution product. Let H be a Hopf superalgebra. Consider the set Ln(H) of even
linear maps H ⊗ · · · ⊗ H → C on the n-fold tensor product of H. A linear map χ is even if
χ(a1, . . . , an) = 0 when |a1| + · · · + |an| is odd. Let φ and ψ be two even maps. We define
their convolution product as the element in Ln(H) given by

(φ � ψ)(a1, . . . , an) =
∑

(−1)
∑n

k=2

∑k−1
l=1 |ak(1)

||al(2)
|
φ
(
a1(1)

, . . . , an(1)

)
ψ

(
a1(2)

, . . . , an(2)

)
. (17)

For example, the product of φ,ψ ∈ L1(H) reads simply

(φ � ψ)(a) =
∑

φ(a(1))ψ(a(2)).

For φ,ψ ∈ L2(H) the product is

(φ � ψ)(a, b) =
∑

(−1)|b(1)||a(2)|φ(a(1), b(1))ψ(a(2), b(2)).

The convolution product makes Ln(H) into an algebra. It is unital with the unit given by
e(a1, . . . , an) = ε(a1) · · · ε(an). Thus, a convolution inverse for an element χ ∈ Ln(H) is an
element χ−1 ∈ Ln(H) such that χ � χ−1 = χ−1 � χ = e.

3.1.2. Cochains and coboundary. An n-cochain is an element χ ∈ Ln(H) such that χ is
convolution invertible and counital. Counitality is the property

χ(a1, . . . , ai−1, 1, ai+1, . . . , an) = ε(a1) · · · ε(ai−1)ε(ai+1) · · · ε(an) (18)

for all i ∈ {1, . . . , n}. We denote by Cn(H) the set of n-cochains on H. The set
Cn(H) forms a group with the convolution product. The unit element is the cochain
e(a1, . . . , an) = ε(a1) · · · ε(an).

For i = 0, . . . , n + 1 consider the maps ∂n
i : Cn(H) → Cn+1(H) defined by(

∂n
i χ

)
(a1, . . . , an+1) = χ(a1, . . . , aiai+1, . . . , an+1) ∀i ∈ {1, . . . , n}(

∂n
0 χ

)
(a1, . . . , an+1) = ε(a1)χ(a2, . . . , an+1)(

∂n
n+1χ

)
(a1, . . . , an+1) = χ(a1, . . . , an)ε(an+1).

The map ∂n : Cn(H) → Cn+1(H) defined by

∂nχ = (
∂n

0 χ
)
�

(
∂n

2 χ
)
� · · · �

(
∂n

1 χ−1) �
(
∂n

3 χ−1) � · · · (19)
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is called the coboundary map.8 For example

∂1χ(a, b) =
∑

χ(a(1))χ(b(1))χ
−1(a(2)b(2)) (20)

∂2χ(a, b, c) =
∑

(−1)|a(1)||a(2)|+|c(2)||b(3)|+|b(1)||b(2)|(−1)|b(1)||b(3)|+|b(1)||b(4)|+|b(2)||b(4)|+|b(3)||b(4)|

× χ(b(1), c(1))χ(a(1), b(2)c(2))χ
−1(a(2)b(3), c(3))χ

−1(a(3), b(4)). (21)

We usually write just ∂ instead of ∂n.

3.1.3. Cohomology groups. An n-cochain χ with the property ∂χ = e is called an n-cocycle.
The cocycles from a subset Zn(H) of Cn(H). Explicitly, the cocycle condition for a 1-cochain
comes out as

χ(a)χ(b) = χ(ab) (22)

while the 2-cocycle condition can be written as∑
(−1)|b(2)||c(1)|χ(b(1), c(1))χ(a, b(2)c(2)) =

∑
(−1)|a(2)||b(1)|χ(a(1), b(1))χ(a(2)b(2), c). (23)

An n-cochain χ that arises from an (n − 1)-cochain ξ as χ = ∂ξ is called an n-coboundary.
The coboundaries also form a subset Bn(H) of Cn(H).

Now assume that H is graded cocommutative. The convolution product is then
commutative and Cn(H) is an Abelian group. Furthermore ∂ becomes a group homomorphism
and both Zn(H) and Bn(H) become groups. Moreover, we then have

∂∂ξ = e

so that an n-coboundary is in particular an n-cocycle. Thus Bn(H) is a subgroup of Zn(H) and
we can form the quotient group Hn(H) = Zn(H)/Bn(H). This is called the nth cohomology
group of H.9

3.2. Drinfeld twist

In this section, we review basic properties of Drinfeld twists due to Drinfeld [2] and Sweedler
[18]. We present a version adapted to Hopf superalgebras.

We first recall the notions of comodule (representation) and comodule superalgebra.
A (left) comodule of a Hopf algebra H is a vector space A together with a linear map
β : A → H ⊗ A such that (id ⊗ β) ◦ β = (� ⊗ id) ◦ β and (ε ⊗ id) ◦ β = id. β is called
a coaction. For coactions we also use a modified version of Sweedler’s notation with the
component in the comodule underlined, β(a) = ∑

a(1) ⊗ a(2).
Consider a comodule A of H that is at the same time a superalgebra. It is called a

comodule superalgebra of H if product (denoted by ·) and comodule structure satisfy the
following compatibility condition:∑

(a · b)(1) ⊗ (a · b)(2) =
∑

(−1)|b(1)||a(2)|a(1)b(1) ⊗ a(2) · b(2).

8 Note that the group operation appearing in the definition of the coboundary map is not the vector space addition
as, e.g., in Hochschild cohomology. Nevertheless, in order to give rise to a cohomology the group operation has to be
Abelian, see below.
9 Of course only in this case of graded cocommutativity is the word ‘cohomology’ fully justified. Indeed this is the
only situation of interest in the present paper. However, important elements of the cohomology remain applicable in
the case of non (graded) cocommutative Hopf algebras.
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3.2.1. Twisting Hopf superalgebras and comodules. Let H be a Hopf superalgebra and
χ ∈ Z2(H) a 2-cocycle on H. There is a new Hopf superalgebra Hχ , the twist of H by χ . Hχ

has the same unit, counit and coproduct as H but a different product and antipode. The new
product is given by

a • b =
∑

(−1)|b(1)|(|a(2)|+|a(3)|)+|b(2)||a(3)|χ(a(1), b(1))a(2)b(2)χ
−1(a(3), b(3)). (24)

It turns out that a twist can be applied not only to the Hopf superalgebra itself but also to
its comodules10. If a comodule A is a comodule superalgebra the twist affects its superalgebra
structure. A is twisted into a comodule superalgebra Aχ of Hχ with the new associative
product ◦ defined by

a ◦ b =
∑

(−1)|b(1)||a(2)|χ(a(1), b(1))a(2) · b(2). (25)

If H is graded cocommutative, its product remains unmodified under a twist and Hχ is
the same as H. However, this is not true for a comodule superalgebra A of H. In general Aχ

is different from A even in the graded cocommutative case. Indeed, the difference between
twisted comodule superalgebras is related to the cohomology of H as follows:

Proposition 3.1. Let H be a graded cocommutative Hopf superalgebra, A a left H-comodule
superalgebra and η, χ ∈ Z2(H). If η and χ are cohomologous in the sense of η = ∂ρ � χ for
ρ ∈ C1(H), then Aη and Aχ are isomorphic as comodule superalgebras. An isomorphism
T : Aη → Aχ is explicitly given by T (a) = ∑

ρ(a(1))a(2).
If A = H with the coaction given by the coproduct, the converse is also true. That is, if

Aη and Aχ are isomorphic as comodule superalgebras then η and χ are cohomologous.

A proof based on [24] can be found in appendix B.2.

3.2.2. Twisting and ∗-structure. Suppose that H is a Hopf ∗-superalgebra in the sense of
appendix A.2 and A a graded left comodule of H equipped with an involution ∗ : A → A.
Then we call A a ∗-comodule if the coaction satisfies∑

(a∗)(1) ⊗ (a∗)(2) =
∑

(−1)|a(1)||a(2)|(a(1))
∗ ⊗ (a(2))

∗. (26)

In the same way, we can define a ∗-comodule superalgebra A. In this case, we can
furthermore investigate under which circumstances a 2-cocycle χ gives rise to a twisted
comodule superalgebra Aχ which is again a ∗-superalgebra. Indeed it is straightforward to
verify that a sufficient condition on χ for this to happen is

χ(a∗, b∗) = χ(b, a). (27)

A 2-cocycle satisfying this property we call real. Our definition is inspired by the analogous
definition for coquasitriangular structures in the literature [24, definition 2.2.8]. It extends the
definition for real Laplace pairing given in section 2.4.4.

3.3. Cohomology in quantum field theory

We are now ready to interpret and extend the results of section 2 from a cohomological point
of view.

10 The twist gives rise to an equivalence of the monoidal categories of comodules of H and Hχ [2]. This is explained
in detail in [10].
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3.3.1. The twisted field algebras as Drinfeld twists. Recall from section 2.3 that the field
operators with the normal product form a Hopf superalgebra H. Forgetting the coproduct and
counit we also denoted this superalgebra by AN . Then we discovered in section 2.4 that for
certain Laplace pairings on this Hopf algebra we obtain new twisted algebras AO,AT using
(4) which reproduce either the operator or the time-ordered product.

Armed with the tools of Hopf algebra cohomology (section 3.1) and the Drinfeld twist
(section 3.2) we see more clearly what is going on. Namely, the Laplace pairings give rise
to Drinfeld twists of AN as a comodule superalgebra of H. Let us clearly explain this step by
step.

Firstly, a Laplace pairing (in the graded cocommutative case) is in particular a 2-cocycle.

Lemma 3.2. Let H be a graded cocommutative Hopf superalgebra. Then a Laplace pairing,
i.e. a map χ : H ⊗ H → C with the properties (1), (2) and (3) is a 2-cocycle.

Proof. Equation (3) is the counitality property (18). Let η be the linear map H ⊗ H → C

defined by η(a, b) := χ(γ (a), b). It is elementary to check that η is the convolution inverse
of χ . Thus, χ is a 2-cochain. Finally, using graded cocommutativity the cocycle condition
(23) readily follows from equations (1) and (2). �

Secondly, AN is a comodule superalgebra of H. Indeed, any Hopf superalgebra has
a comodule superalgebra which is just a copy of itself. The coaction to be taken is the
coproduct, i.e.

∑
a(1) ⊗ a(2) := ∑

a(1) ⊗ a(2) in the notation introduced above. A Laplace
pairing χ on H, being a 2-cocycle, gives rise to a Drinfeld twist of H according to (24). Since
H is graded cocommutative the twisted Hopf superalgebra Hχ is identical to the untwisted
one. χ also gives rise to an induced twist of the comodule superalgebra AN according to
(25). Since the coaction is given by the coproduct we recover the initial twist formula (4)
with a new interpretation. This also explains why the twisted superalgebras AO and AT are
no longer Hopf algebras: AN was not considered a Hopf algebra from the beginning, despite
the ‘accident’ AN = H .11

Recall that apart from the superalgebra structure we use one more piece of the Hopf
algebra structure of H on AN . This is the map ε : AN → C which is the counit on H. As
was shown in proposition 2.2 it plays the role of the vacuum expectation value. The twisted
superalgebras AO and AT inherit the map ε without change12. ε continues to play the role
of the vacuum expectation value. Only equipped with ε do the superalgebras carry the full
information of quantum field theory. Superalgebras such as AN,AO,AT , which carry the
additional structure of a linear function A → C are called augmented superalgebras.

For the ∗-structure, we remark that AN and H could in principle have turned out to have
different ∗-structures. What is important is only that AN is a ∗-comodule superalgebra of H
in the sense of (26). The results of section 2, however, imply that putting the same ∗-structure
on H and AN (namely that of the † operation in AN ) leads to consistent results.

3.3.2. Cohomology of Sym(V ). We turn to cohomological aspects of the relevant Hopf
superalgebra H of field operators. Recall that H has the structure of the graded symmetric

11 One might envision applications to quantum field theory where H is different from AN , but this is beyond the scope
of the present paper.
12 This is perfectly justified from the Drinfeld twist point of view. Morally speaking, the twist does not affect
comodule structures and comodule maps as such but the tensor product of comodules (and hence a comodule algebra
structure as its definition involves a tensor product of comodules). The deeper meaning of this lies in the fact that
the twist gives rise to a monoidal equivalence of comodule categories. This equivalence is mediated by a functor that
transforms objects and morphisms trivially and only tensor products non-trivially. See section 2 of [10] for a more
explicit exposition of these facts.
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Hopf superalgebra Sym(V ), where V is the space of field operators. The cohomology groups of
Sym(V ) (in the bosonic case) are discussed in appendix B.1. More relevant for the application
to quantum field theory, are the following results about the structure of cochains. The proofs
of the lemmas are elaborated in appendix B.2.

Let us write V = V0 ⊕ V1 for V0 the even (bosonic) and V1 the odd (fermionic) part of
V . To ease notation we simply write Cn,Zn and Bn for cochains, cocycles and coboundaries
of Sym(V ). Denote by N1 the set of 1-cochains of Sym(V ) that vanish on the subspace
V ⊂ Sym(V ). As is seen immediately they form a subgroup of C1.

Lemma 3.3. C1 is equal to the direct product Z1 × N1 of its subgroups. This implies that
∂1 : N1 → B2 is invertible, i.e. is an isomorphism of groups.

We call a 2-cochain χ symmetric if it satisfies the property

χ(b, a) = (−1)|a||b|χ(a, b) (28)

for all a, b ∈ Sym(V ). One easily checks that the symmetric 2-cochains form a subgroup
C2

sym of C2.

Lemma 3.4. B2 = Z2
sym. That is, the 2-coboundaries are precisely the symmetric 2-cocycles.

By lemma 3.2, a Laplace pairing as defined in section 2.1.2 is in particular a 2-cocycle.
Furthermore, the convolution product of Laplace pairings is again a Laplace pairing. Thus,
they form a subgroup of Z2 which we will call R2.

The introduction of something like ‘antisymmetric’ 2-cochains is less straightforward.
We limit ourselves here to Laplace pairings. We call a Laplace pairing antisymmetric if it
satisfies the property

χ(w, v) = −(−1)|v||w|χ(v,w) (29)

for all v,w ∈ V . The antisymmetric Laplace pairings form a subgroup R2
asym of R2.

Lemma 3.5. Z2 is equal to the direct product B2 × R2
asym of its subgroups.

From lemmas 3.3 and 3.5 it follows that the first two cohomology groups are given by
H 1 = N1 and H 2 = R2

asym, but we shall not need these results here.

3.3.3. The operator product. We saw in section 2.4 that the operator product of quantum
field theory, i.e. the product on AO , is induced by a twist of AN with the Wightman pairing (|)+

on H. The fact that AO is not commutative and thus not isomorphic to AN is nicely reflected in
the cohomology. Namely, the 2-cocycle (|)+ is not symmetric in the sense of (28) and thus by
lemma 3.4 it is not a 2-coboundary. Hence by proposition 3.1 (take η = e, the unit cochain,
and χ = (|)+) the algebras AN and AO cannot be isomorphic.

Since the Wightman pairing (|)+ is real in the sense of (27) the superalgebra AO is a
∗-superalgebra as is AN . This was already remarked in section 2.4.4.

3.3.4. The time-ordered product. According to section 2.4 the time-ordered product is
obtained from the Feynman pairing (|)F , twisting the superalgebra AN into the superalgebra
AT . As is well known these superalgebras AN and AT are isomorphic as superalgebras.
From the cohomological point of view this emerges as follows. The Feynman pairing (|)F
is symmetric in the sense of (28) and thus by lemma 3.4 it is a 2-coboundary. Hence by
proposition 3.1 the algebras AN and AT are isomorphic.
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However, this does not mean that the ‘deformation’ of AN into AT is trivial from the
point of view of quantum field theory. Recall that the information of quantum field theory
is not contained in AT alone, but crucially requires a map ε : AT → C describing the
vacuum expectation value. That is, we are dealing with augmented superalgebras and as such
(AN, ε) and (AT , ε) are not isomorphic. In particular, for an isomorphism T : AN → AT the
composition ε ◦ T is different from ε.

Proposition 3.1 (take η = e and χ = (|)F ) not only tells us that AN and AT are isomorphic
but even provides us with one explicit isomorphism T : AN → AT for each 1-cochain ρ that
satisfies χ = (∂ρ)−1. The choice of such 1-cochains ρ is parametrized by a 1-cocycle. We can
select a unique 1-cochain ρ by imposing suitable conditions on the associated isomorphism
T. A natural choice is to demand T to act identically on V , i.e. T (v) = v for all v ∈ V . This
is motivated by giving T the role of a time-ordering operation. Since T is given according to
proposition 3.1 by T (a) = ∑

ρ(a(1))a(2) this would imply ρ(v) = 0 for all v ∈ V , i.e. that
ρ ∈ N1. Lemma 3.3 implies that we can indeed choose ρ to lie in N1 and furthermore, that
this determines ρ uniquely. This gives rise to the following result.

Proposition 3.6. Let χ be a 2-coboundary on H. Denote by ◦ the induced twisted product
on the twisted comodule superalgebra AT . There exists a unique 1-cochain ρ such that
(∂ρ)−1 = χ and ρ(v) = 0 for all v ∈ V . The superalgebra isomorphism T : AN → AT

given by T (a) = ∑
ρ(a(1))a(2) satisfies

T (v1∨ · · · ∨vn) = v1 ◦ · · · ◦ vn (30)

for v1, . . . , vn ∈ V .

Proof. As already mentioned ρ(v) = 0 for v ∈ V implies T (v) = v. Thus T being an
isomorphism implies T (v1∨ · · · ∨vn) = T (v1) ◦ · · · ◦ T (vn) = v1 ◦ · · · ◦ vn. This is all that
remained to be shown. �

Note that we have formulated the proposition in a slightly more general way than required,
by replacing the Feynman pairing with a general 2-coboundary. As desired, equation (30)
can be interpreted as a realization of the time-ordering operation of quantum field theory as a
superalgebra isomorphism between AN and AT .

By definition of T the 1-cochain ρ has the property ρ = ε ◦T . This implies that a vacuum
expectation value can be expressed directly in terms of ρ.

Corollary 3.7.

〈0|φ(x1) ◦ · · · ◦ φ(xn)|0〉 = ε(φ(x1) ◦ · · · ◦ φ(xn))

= ε(T (φ(x1)∨ · · · ∨φ(xn)))

= ρ(φ(x1)∨ · · · ∨φ(xn)). (31)

In this sense, ρ encodes directly the free n-point functions.
While we were so far only concerned with the definition of ρ we turn now to its

computation. Due to lemma 3.3, ρ ∈ N1(H) is determined completely by (|)F = (∂ρ)−1 as
∂1 is invertible on N1(H). Indeed we can use (20) for a recursive definition of ρ. Namely, set
ρ(1) = 1, ρ(v) = 0 and ρ(v∨w) = (v|w)F . Then define ρ recursively on subspaces of AN of
increasing degree by

ρ(a∨b) =
∑

(a(1)|b(1))F ρ(a(2))ρ(b(2)).

As already mentioned in section 2.4.4 the Feynman pairing (|)F is not real and AT is indeed
not a ∗-superalgebra. Nevertheless, the involution * can be combined with the time-ordering
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map T in an interesting way. Namely, consider the map T ∗(a) := (T (a∗))∗ for a ∈ AN . This
anti-time-ordering operator was first considered by Dyson [40] and plays an important role
in non-equilibrium quantum field theory [41–43]. Our definition of the anti-time-ordering
operator follows [44]. It yields (here for fermionic fields ψ)

T ∗(ψ(x)∨ψ †(y)) = θ(y0 − x0)ψ(x)ψ †(y) − θ(x0 − y0)ψ †(y)ψ(x).

In other words, T ∗ orders the fields by decreasing times from right to left. Defining the
1-cochain ρ∗ = ε ◦ T ∗ we see that the anti-time-ordered product is a twisted product via the
Laplace pairing (|)T ∗ = (∂ρ∗)−1. More explicitly (again for the example of fermionic fields)
this Laplace pairing is determined by (ψ(x)|ψ †(y))T ∗ = (ψ(y)|ψ †(x))F . The map T ∗ thus
becomes an algebra isomorphism T ∗ : AN → AT ∗ , with AT ∗ the algebra of field operators
with the anti-time-ordered product.

In non-relativistic quantum theory, time-reversal symmetry is implemented by complex
conjugation [45, 46]. In relativistic quantum field theory, the time-reversal operator � acts
on fermion fields by �(ψ(x0, x)) = iγ 1γ 3ψ(−x0, x), which does not involve the ∗-structure.
The time-reversal operator relates the time-orderings by T (�(a)) = �(T ∗(a)) for a ∈ AN .

4. Interactions

Up to now we have exclusively dealt with free quantum field theory. In this section, we
extend our treatment to interacting fields. On the one hand we will show how our approach
to quantum field theory links up with standard perturbation theory. On the other hand we will
discuss implications for interacting quantum field theory in general, and possible connections
to non-perturbative approaches.

4.1. Standard perturbation theory

Introducing interactions in the standard perturbative way is straightforward, given the free
n-point functions. Let us generically denote field operators by φ(x), leaving out internal
indices.

Following the usual perturbation theory we write the action as S = S0 + λSint, where S0 is
the kinetic term and λ the coupling constant. Following a path integral notation the interacting
n-point functions are given by

〈0|T (φint(x1), . . . , φint(xn))|0〉 =
∫
Dφφ(x1) · · · φ(xn) eiS0+iλSint∫

Dφ eiS0+iλSint

=
∑

k
1
k! (iλ)k〈0|T (

φ(x1)∨ · · · ∨φ(xn)∨S∨k
int

)|0〉∑
k

1
k! (iλ)k〈0|T (

S∨k
int

)|0〉

=
∑

k
1
k! (iλ)kρ

(
φ(x1)∨ · · · ∨φ(xn)∨S∨k

int

)∑
k

1
k! (iλ)kρ

(
S∨k

int

) . (32)

Here, S∨k
int denotes the k-fold normal product of Sint with itself and S∨0

int = 1. Alternatively, in
terms of an S-matrix

S =
∞∑

k=0

1

k!
(iλ)k(T (Sint))

◦k

we obtain

〈0|T (φint(x1), . . . , φint(xn))|0〉 = ε(φ(x1) ◦ · · · ◦ φ(xn) ◦ S)

ε(S)
(33)

where ◦ denotes the time-ordered product.
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We emphasize that the difference from conventional approaches is not only notational.
While the path integral method is capable of the evaluation of equation (32), it is usually
evaluated by recursive means using functional derivatives. Such algorithms were demonstrated
to be computationally ineffective [16, 17]. In such a recursion, terms occur which cancel out
during further steps of evaluation in the recursion. Since these terms may even contain
divergent integrals which need to be renormalized, this can cause confusion and wastes labour.
In contrast to this finding, the Hopf algebraic version equation (33) can be evaluated directly
using the formulae provided in section 2.4.5. The remarkable fact behind these formulae is
that they are explicit and efficient for any order. It can be shown that they yield exactly as many
terms as are potentially non-zero. Especially one may note that no cancellations take place, as
long as no further symmetries are encountered in the pairings involved in the employed twists.
The formulae (12) and (13) prove to be algorithmically optimal in this sense.

4.2. Beyond perturbation theory

We turn now to general considerations of quantum field theory beyond any perturbation theory.
We consider the same field operators and thus the same Hopf superalgebra H and superalgebra
AN as before. Recall that all the information of a quantum field theory (interacting or not) is
encoded in the n-point functions. We write generically

ρint(φ(x1)∨ · · · ∨φ(xn)) := 〈0|T (φint(x1), . . . , φint(xn))|0〉.
From this point of view, the set of n-point functions is nothing but a 1-cochain ρint on H (since
〈0|1|0〉 = 1).

For the free theory we saw in section 3.3.4 that the Feynman pairing (|)F leads to a
1-cochain ρ that encodes directly the n-point functions (31). ρ was the 1-cochain in N1(H)

determined by the property (|)F = (∂ρ)−1. Indeed, we can turn this argument around:

Proposition 4.1. Let ρ ∈ N1(Sym(V )), then χ = (∂ρ)−1 is a 2-cocycle which induces a
twisted product ◦ in Sym(V ) as a comodule superalgebra over itself with the property

ρ(v1∨ · · · ∨vn) = ε(v1 ◦ · · · ◦ vn)

for v1, . . . , vn ∈ V .

Proof. By proposition 3.1, T (a) = ∑
ρ(a(1))a(2) is a superalgebra isomorphism between the

original and the twisted superalgebras. The statement is then obtained by applying the counit
to (30) with the proof as in proposition 3.6. �

This means, given an arbitrary set of n-point functions ρint satisfying ρint(1) = 〈0|1|0〉 = 1
and ρint(φ(x)) = 〈0|φint(x)|0〉 = 0, we can construct a twisted product ◦ which recovers these
n-point functions. This product is thus the time-ordered product of interacting fields. The
2-cocycle inducing this product is simply χint := (∂ρint)

−1. We can view this as a kind of
(algebraic) reconstruction result in the spirit of Streater and Wightman [47], although for the
time-ordered and not the operator product.

Furthermore, according to proposition 3.1 and analogous to section 3.3.4 we obtain an
isomorphism of superalgebras Tint : AN → AT,int via Tint(a) := ∑

ρint(a(1))a(2). This
isomorphism might be viewed as an interacting time ordering, i.e. it takes care at the same
time of the interaction and the time ordering. Thus, we may write

〈0|T (φint(x1), . . . , φint(xn))|0〉 = ε(Tint(φ(x1)∨ · · · ∨φ(xn))).
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What we have thus shown is that not only a free quantum field theory can be completely
encoded in a 2-cocycle on H, but any quantum field theory defined through polynomial n-point
functions can thus be encoded (provided its 1-point functions vanish). What is more, whether
the theory is free or not corresponds to a simple property of the 2-cocycle. We define free here
to mean that n-point functions factorize into 2-point functions according to (12).

Proposition 4.2. Let a quantum field theory be given in terms of H = Sym(V ) and a 2-cocycle
χ on H inducing the interacting time-ordered product. Then the theory is free if and only if χ

is a Laplace pairing.

The proof is straightforward now. If χ is a Laplace pairing the n-point functions are
determined by the 2-point functions according to formula (12) and thus the theory is free.
Conversely, if the theory is free formula (12) holds and we can thus construct a Laplace
pairing that reproduces the n-point functions. Since these determine χ uniquely it must be
identical to the constructed Laplace pairing.

5. Non-trivial vacua

In this section, we illustrate again the computational power of Hopf algebras by solving a
problem of quantum chemistry.

A state is a linear map ρ from ÂN to C such that ρ(1) = 1 and ρ(u∗u) � 0 for any
element u of ÂN [48] (recall that u∗u is the operator product of u∗ and u). The pure states
are states of the form ρ(u) = 〈ψ |u|ψ〉, where |ψ〉 is a vector of the Fock space F , and the
states that are not pure are called mixed states. They can be written as a weighted sum of pure
states. Physically relevant pure states are such that 〈ψ |u|ψ〉 = 0 if u contains an odd number
of Dirac fields. Thus we consider states ρ(u) which are zero if u contains an odd number of
Dirac fields. Since ρ is linear, even and ρ(1) = 1, a state is 1-cochain.

In [19], Kutzelnigg and Mukherjee study the following problem of quantum chemistry.
Assume that a quantum system is described by a state ρ, is it possible to define normal products
adapted to ρ? The usual normal products are adapted to the vacuum because ε(u) = 〈0|u|0〉 is
zero if u has no scalar part (i.e. no part proportional to 1). To adapt a normal product to a state
ρ, we start from an element u ∈ ÂN and we want to find an element ũ such that ρ(ũ) = ε(u),
so that the state ρ can be considered as the new vacuum of the system. Kutzelnigg and
Mukherjee investigated this problem for pure states and they solved it for elements u which
are the normal product of a small number of creation and annihilation operators. The Hopf
algebra methods will enable us to solve it for general states and to give formulae that are valid
for any u ∈ ÂN .

The solution of this problem is quite simple. We just have to define

ũ =
∑

ρ−1(u(1))u(2) (34)

because ρ(ũ) = ∑
ρ−1(u(1))ρ(u(2)) = (ρ−1 �ρ)(u) = ε(u). Note that formula (34) is another

instance of a T-operator, where ρ is replaced by ρ−1.
Let us give a few examples. In this section, we consider Dirac fields, which are relevant

for this type of application. The convolution inverse ρ−1 is even because ρ is even. It can be
computed recursively by (see [49], p 259)

ρ−1(1) = 1

ρ−1(u) = −ρ(u) −
∑′

ρ−1(u(1))ρ(u(2))
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where
∑′

u(1) ⊗ u(2) := �u − 1 ⊗ u − u ⊗ 1 for u ∈ ÂN and u contains the product of two
or more creation or annihilation operators. The first examples for Dirac fields are

ρ−1(a∨b) = −ρ(a∨b)

ρ−1(a∨b∨c∨d) = −ρ(a∨b∨c∨d) + 2ρ(a∨b)ρ(c∨d) − 2ρ(a∨c)ρ(b∨d) + 2ρ(a∨d)ρ(b∨c)

where a, b, c, d are Dirac creation or annihilation operators. From ρ−1 and equation (34) we
can calculate the first adapted normal products of Dirac fields.

ã = a

ã∨b = a∨b − ρ(a∨b)

ã∨b∨c = a∨b∨c − ρ(a∨b)c + ρ(a∨c)b − ρ(b∨c)a

˜a∨b∨c∨d = a∨b∨c∨d − ρ(a∨b)c∨d + ρ(a∨c)b∨d − ρ(b∨c)a∨d

− ρ(a∨d)b∨c + ρ(b∨d)a∨c − ρ(c∨d)a∨b − ρ(a∨b∨c∨d)

+ 2ρ(a∨b)ρ(c∨d) − 2ρ(a∨c)ρ(b∨d) + 2ρ(a∨d)ρ(b∨c).

It can be checked that these ũ coincide with the adapted normal products defined in [19].
The second question posed by Kutzelnigg and Mukherjee is: once we have defined

adapted normal products, how can we express their operator products? Again, the Hopf
algebra methods yield a complete answer. Starting from ũ and ṽ we look for a 2-cocycle χ

such that

ũṽ =
∑

(−1)|u(2)||v(1)|χ(u(1), v(1)) ˜u(2)∨v(2). (35)

The answer is now expected by the reader: χ = (∂ρ−1) � (.|.)+.
At this stage, it will be useful to give a few examples to show the kind of expressions that are

obtained by a direct calculation. According to lemma 3.4, ∂ρ−1(u, v) = (−1)|u||v|∂ρ−1(v, u).
The value of ∂ρ−1(u, v) for the simplest elements of ÂN is, again for Dirac fields,

∂ρ−1(a, b) = ρ(a∨b)

∂ρ−1(a∨b, c∨d) = ρ(a∨b∨c∨d) − ρ(a∨b)ρ(c∨d)

∂ρ−1(a, b∨c∨d) = ρ(a∨b∨c∨d) − ρ(a∨b)ρ(c∨d) + ρ(a∨c)ρ(b∨d) − ρ(b∨c)ρ(a∨d)

= ∂ρ−1(a∨b∨c, d).

Now we can calculate χ as

χ(u, v) =
∑

∂ρ−1(u(1), v(2))(u(2)|v(1))+ =
∑

∂ρ−1(u(2), v(1))(u(1)|v(2))+.

A few example computations might be appropriate

χ(a, b) = ρ(a∨b) + (a|b)+

χ(a∨b∨c, d) = ∂ρ−1(a∨b∨c, d)

χ(a∨b, c∨d) = ∂ρ−1(a∨b, c∨d) + (a∨b|c∨d)+ − ρ(a∨c)(b|d)+ + ρ(a∨d)(b|c)+

+ ρ(b∨c)(a|d)+ − ρ(b∨d)(a|c)+.

Finally, we define the product of ũ and ṽ by ũṽ = ∑
∂ρ−1(u(2), v(1))ũ(1)v(2). This

operator product satisfies (35) and a few simple examples of it are

ãb̃ = ã∨b + ρ(a∨b) + (a|b)+

(ã∨b)c̃ = ã∨b∨c − (a|c)+b̃ + (b|c)+ã + ρ(b∨c)ã − ρ(a∨c)b̃.

As illustrated in [19], the combinatorial complexity of the products increases very quickly.
The Hopf algebraic concepts provide powerful tools to manipulate these products.
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Moreover, this example coming from quantum chemistry shows that the convolution of
a Laplace pairing by a 2-coboundary is a very natural quantum object. Lemma 3.5 says that
all 2-cocycles can be obtained by such a convolution. The adapted normal product can be
understood as inducing a transformation of the augmentation. This parallels the situation
discussed in section 3.3.4, as exhibited in equation (31).

The basis change defined by equation (34) appears not only in quantum chemistry, but
also in the context of quantum field theory in curved spacetime. In [50] (theorem 5.1), it is
shown that two Wick monomials that can define a quantum field theory in curved spacetime
are related by equation (34).

6. Conclusions and outlook

We conclude this paper by sketching possible future developments and applications of the
presented framework.

From a computational point of view, the Hopf algebra structure presented in this paper
was already used to solve two old problems of many-body theory: the hierarchy of Green
functions for systems with initial correlation [51] and the many-body generalization of the
crystal-field method [52]. More results along these lines might be expected.

In an interesting parallel development Kreimer discovered that the combinatorics of
Bogoliubov’s recursion formula of renormalization and Zimmermann’s solution can be
expressed in Hopf algebraic terms [53]. This was further elaborated by Connes, Kreimer and
Pinter [53–55]. In particular, it was also shown how this leads to computational improvements
compared to traditional methods [56]. It should be possible to connect this Hopf algebraic
structure associated with the perturbative Feynman diagram expansion with the algebraic
framework introduced in this paper. Indeed, Pinter’s work might be seen as pointing in this
direction [55]. More concrete steps for establishing such a connection were performed in [57].

Looking back at section 3.2 there are really three ingredients to the twist, the Hopf
superalgebra H, the comodule (super)algebra A and the 2-cocycle χ . In the case explored in
this paper, however, A and H are really the same, namely the algebra of normal ordered field
operators (section 3.3.1). However, the fact that we obtain deformations of this (super)algebra
only depends on the choice of A. In this respect the fact that H may also be taken to be this
superalgebra (extended to a Hopf superalgebra) is an ‘accident’.

One may ask whether a different choice for H (and thus also for the cocycle) may lead to
any interesting constructions for QFT. This is indeed the case as evidenced by [11]. There, in
essentially the same twist deformation construction for QFT the Hopf algebra H was chosen
to correspond to the group of translations of Minkowski space. A certain cocycle then yields
QFT on noncommutative spacetimes of the Moyal type.

Thus, the same twist procedure unifies a priori rather different and unrelated constructions
in QFT. It seems likely that there is rather more to discover. It should be mentioned in this
context that it is straightforward to consider the Hopf algebraic analogues of group products
such as direct or semidirect ones. Moreover, in general the twist does not leave H invariant.
In particular, it can lead to genuine quantum group symmetries even if the initial objects are
group symmetries. See [11, section 4.4] for examples.

Another interesting direction for generalizing our approach is to nonlinear QFT. To this
end note that H (and AN ) may be seen as the algebra of polynomial functions on field
configurations. Considering a nonlinear field theory the analogue would be an algebra of
functions on field configurations generated by suitably chosen modes. At least for compact
group target spaces this is rather straightforward by employing the Peter–Weyl decomposition.
Of course H would no longer be cocommutative if the respective group is non-Abelian. This
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implies for example that part of the cohomology theory no longer works. However, the crucial
part, namely the Drinfeld twist, generalizes to this case. This offers perspectives to describe
quantized nonlinear QFTs through our approach.

Not elaborated in the course of this work was the intimate connection of Hopf algebraic
methods to combinatorics and group representations. The invariant theoretic content of Hopf
superalgebraic methods was studied in [26]. The connection of Hopf algebra cohomology
to branching laws, group representations and symmetric functions was investigated in [58].
From these contacts to other fields of mathematics one expects further insight into the structure
of QFT. This will be considered elsewhere.
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Appendix A. Introduction to Hopf ∗-superalgebras

In this appendix, we give a detailed list of the definitions and main properties of Hopf
superalgebras because this information is scattered in the literature, using various incompatible
conventions and notations. Standard references for Hopf algebras and associated structures
are [23, 24, 49, 59], and the super case is emphasized in [60]. All vector spaces are over the
field C of complex numbers.

A.1. Hopf superalgebras

A vector space H is a super vector space if it can be written as H = H0 ⊕ H1. If an element
a is in either H0 or H1, we say that it is homogeneous. If a ∈ H0 (resp. a ∈ H1), we say
that it is even (resp. odd) and its parity is |a| = 0 (resp. |a| = 1). The concept of super
vector space enables us to consider fermions and bosons on the same footing. A super vector
space H is a superalgebra if it is endowed with an associative product and a unit 1 ∈ H0 and
if |ab| = |a| + |b| modulo 2 for any homogeneous elements a and b in H. A superalgebra
H is a Hopf superalgebra if it is endowed with a coproduct � : H −→ H ⊗ H , a counit
ε : H −→ C and an antipode γ : H −→ H , such that

• � is a graded coproduct, i.e. for any homogeneous element a of H, in �a = ∑
a(1) ⊗ a(2)

(using Sweedler’s notation) all a(1) and a(2) are homogeneous and |a| = |a(1)| + |a(2)|.
• � and ε are graded algebra morphisms and γ is a graded algebra anti-morphism, i.e.

�(ab) =
∑

(−1)|a(2)||b(1)|a(1)b(1) ⊗ a(2)b(2)

ε(ab) = ε(a)ε(b)

γ (ab) = (−1)|a||b|γ (b)γ (a);
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• �, ε and γ are unital maps, i.e.

�(1) = 1 ⊗ 1 ε(1) = 1 γ (1) = 1;
• � is coassociative, i.e.

(� ⊗ id) ◦ �(a) = (id ⊗ �) ◦ �(a) ≡ �2(a) =
∑

a(1) ⊗ a(2) ⊗ a(3);
• ε is counital, i.e.∑

ε(a(1))a(2) =
∑

a(1)ε(a(2)) = a;
• γ is counital, i.e. ε(γ (a)) = ε(a), and satisfies the identity∑

γ (a(1))a(2) =
∑

a(1)γ (a(2)) = ε(a)1.

Under these assumptions, the antipode is also a graded coalgebra anti-morphism, that is

�γ (a) =
∑

γ (a)(1) ⊗ γ (a)(2) =
∑

(−1)|a(1)||a(2)|γ (a(2)) ⊗ γ (a(1)).

A Hopf superalgebra H is graded commutative if ab = (−1)|a||b|ba, and it is graded
cocommutative if

�a =
∑

a(1) ⊗ a(2) =
∑

(−1)|a(1)||a(2)|a(2) ⊗ a(1)

for any homogeneous a, b ∈ H . If a Hopf superalgebra H is graded commutative or graded
cocommutative, then γ (γ (a)) = a for any a ∈ H .

A Hopf superalgebra H is graded if there are super vector spaces Hn for n ∈ N such that

H =
⊕
n∈N

Hn.

If a ∈ Hn we say that a is a homogeneous element of degree n, and we denote the degree
of a by deg(a). Moreover, the degree is an algebra map, i.e. if a ∈ Hn and b ∈ Hm then
ab ∈ Hn+m, and a coalgebra map, i.e. if a ∈ Hn and �a = ∑

a(1) ⊗ a(2) then a(1) and a(2) are
homogeneous elements and deg(a(1))+ deg(a(2)) = n. Finally, if a is a homogeneous element,
then ε(a) = 0 if deg(a) > 0 and ε(1) = 1.

A.2. Hopf ∗-superalgebra

In quantum field theory, the adjoint operator a �→ a∗ plays a prominent role. Its existence
is one of the basic principles of axiomatic quantum (field) theories [61–63]. It is tied to the
definition of a positive quantum field state (i.e. a positive continuous linear functional such
that ρ(1) = 1 and ρ(uu∗) � 0). Such a ρ allows via the GNS construction the reconstruction
of a Hilbert space picture.

Therefore, it is important to specify the interplay between the adjoint operator and the
Hopf superalgebra structure. This is done abstractly by defining a star-operation as a bijection
*: H → H such that (a∗)∗ = a for any a ∈ H, (λa + µb)∗ = λ̄a∗ + µ̄b∗ for any a, b

in H and any complex numbers λ and µ (with complex conjugate λ̄ and µ̄). We use De
Witt’s convention13: (ab)∗ = b∗a∗ because it is compatible with the interpretation of * as
the Hermitian adjoint of an operator. The action of the star operation on the tensor product
is (a ⊗ b)∗ = (−1)|a||b|a∗ ⊗ b∗. The compatibility of the star operation with the parity is
|a∗| = |a|. The compatibility of the star operation with the coproduct is

�(a∗) =
∑

a∗
(1) ⊗ a∗

(2) = (�a)∗ =
∑

(−1)|a(1)||a(2)|a(1)
∗ ⊗ a(2)

∗.

13 In the mathematical literature, one finds also (ab)∗ = (−1)|a||b|b∗a∗ (e.g. [64, 65]).
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The compatibility of the star operation with the counit is ε(a∗) = (ε(a))∗. The compatibility
with the antipode is

γ (γ (a∗)∗) = a.

Finally, when the Hopf superalgebra is graded, the star operation must be compatible with this
grading: deg(a∗) = deg(a).

A.3. The symmetric Hopf superalgebra

If V is a vector space, the symmetric Hopf algebra S(V ) was described in pedagogical detail
in our paper [15]. Here we consider the symmetric Hopf superalgebra Sym(V ) where V is a
super vector space (see [1, appendix 2]). Let V = V0 ⊕ V1 be a super vector space over C,
and denote by |v| the parity of a homogeneous element v ∈ V . Let T (V ) = ⊕∞

n=0V
⊗n be the

tensor algebra on V , with the tensor (free) product ⊗, and unit 1 ∈ C = V ⊗0.
The symmetric superalgebra on V is the quotient of T (V ) by the supersymmetric (or

graded commutative) relation, that is

Sym(V ) = T (V )/〈u ⊗ v − (−1)|u||v|v ⊗ u〉
where the elements u, v are homogeneous in V . Since the ideal is generated by a homogeneous
relation, the quotient Sym(V ) is still a graded vector space, that is Sym(V ) = ⊕∞

n=0Symn(V ),
and it has homogeneous components Symn(V ) = ∑

p+q=n Sp(V0) ⊗ �q(V1), where Sp(V0)

denotes the symmetric p-powers on V0 and �q(V1) denotes the exterior (skew symmetric)
q-powers on V1. Then, in the quotient Sym(V ) we denote by ∨ the concatenation product
induced by ⊗. Explicitly, for u1∨ · · · ∨ur ∈ Symr (V ) and v1∨ · · · ∨vs ∈ Syms(V ) we have

(u1∨ · · · ∨ur)∨(v1∨ · · · ∨vs) = u1∨ · · · ∨ur∨v1∨ · · · ∨vs ∈ Symr+s(V ).

The product ∨ is associative (as well as ⊗), unital (with unit 1 ∈ C = Sym0) and graded
commutative, that is u∨v = (−1)|u||v|v∨u for homogeneous u, v ∈ V .

As a vector space, Sym(V ) is isomorphic to S(V0) ⊗ �(V1), but not as an algebra. In
fact, in S(V0) ⊗ �(V1) the product is among each tensor component (bosons with bosons,
fermions with fermions), while in Sym(V ) we may wish to multiply the two components
(bosons with fermions). As an algebra, Sym(V ) is isomorphic to the superalgebra H0 ⊕ H1,
where H0 = S(V0) ⊗ ⊕∞

n=0�
2n(V1) has even parity and H1 = S(V0) ⊗ ⊕∞

n=0�
2n+1(V1) has

odd parity. For this, it suffices to check that H0∨H0 and H1∨H1 are subsets of H0, and that
H0∨H1 and H1∨H0 are subsets of H1.

The symmetric superalgebra Sym(V ) can be endowed with a coassociative coproduct
� : Sym(V ) → Sym(V ) ⊗ Sym(V ), defined on the generators v ∈ V as �v = 1 ⊗ v + v ⊗ 1
and extended to products v1∨ · · · ∨vn as an algebra morphism. Due to the graded commutativity
of the product ∨, the formula for a generic element of length n can be explicitly given in
terms of the (p, n − p) shuffles, which are the permutations σ on n elements such that
σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(n): if u = v1∨ · · · ∨vn,

�u = u ⊗ 1 + 1 ⊗ u +
n−1∑
p=1

(−1)F vσ(1)∨ · · · ∨vσ(p) ⊗ vσ(p+1)∨ · · · ∨vσ(n) (36)

where

F =
p∑

i=1

n∑
j=p+1

θ(σ (i) − σ(j))|vσ(i)||vσ(j)|
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with θ(σ (i) − σ(j)) = 1 if σ(i) > σ(j) and θ(σ (i) − σ(j)) = 0 if σ(i) < σ(j). When all
operators are odd (|vi | = 1 for all i), (−1)F is the signature (−1)σ of the permutation σ , when
all operators are even, (−1)F = 1.

The simplest example of equation (36) is

�(v1∨v2) = v1∨v2 ⊗ 1 + 1 ⊗ v1∨v2 + v1 ⊗ v2 + (−1)|v1||v2|v2 ⊗ v1.

The linear map ε : Sym(V ) → C which is the identity on the scalars C = V 0 ⊂ Sym(V ),
and zero on higher degrees, is a counit for this coproduct. Moreover an antipode is then
automatically defined by induction on the length of the elements. In conclusion, the symmetric
superalgebra Sym(V ) has the structure of a graded commutative Hopf superalgebra, as defined
in appendix A.1.

Appendix B. Cohomology computations for Sym(V )

B.1. Cohomology groups of bosonic Sym(V )

In the bosonic case, i.e. if V is purely even, we can work out the cohomology groups of
Sym(V ) as follows.

The symmetric algebra Sym(V ) can be seen as the universal enveloping algebra U(V ) of
the Abelian Lie algebra V (with all brackets set to zero). Sweedler proves in [18, theorem 4.1,
p 212] that the Hopf algebra cohomology H •(Sym(V )) is isomorphic to the Hochschild
cohomology HH •(U(V )). This is known to be isomorphic to the Chevalley–Eilenberg
cohomology H •(V ) of the Lie algebra. Since V is Abelian, all coboundary operators are
zero and H •(V ) is easily computed: H •(V ) = [�•(V )]∗. Hence H 1(Sym(V )) = V ∗ and
H 2(Sym(V )) = (�2(V ))∗ = HomC(�2(V), C).

B.2. Proofs of cohomological statements

Proof of proposition 3.1. We first show that T : Aη → Aχ given by T (a) = ∑
ρ(a(1))a(2)

is a comodule map. Using graded cocommutativity we find as required,∑
T (a)(1) ⊗ T (a)(2) =

∑
ρ(a(1))a(2) ⊗ a(3)

=
∑

a(1) ⊗ ρ(a(2))a(3)

=
∑

a(1) ⊗ T (a(2)).

We prove secondly that T is a superalgebra isomorphism. We denote the twisted product
induced by η by ◦η and the twisted product induced by χ by ◦χ . Using graded cocommutativity
we find as required,

T (a ◦η b) =
∑

(−1)|b(1)||a(2)|η(a(1), b(1))T (a(2)b(2))

=
∑

(−1)|a(1)||a(2)|+|a(1)||a(3)|+|a(1)||a(4)|+|a(2)||a(3)|+|a(2)||a(4)|+|a(3)||a(4)|

× ∂ρ(a(1), b(1))χ(a(2), b(2))ρ(a(3)b(3))a(4)b(4)

=
∑

(−1)|b(2)||a(3)|ρ(a(1))ρ(b(1))χ(a(2), b(2))a(3)b(3)

=
∑

(−1)|b(1)||a(2)|χ(a(1), b(1))T (a(2))T (b(2))

=
∑

(−1)|T (b)(1)||T (a)(2)|χ(T (a)(1), T (b)(1))T (a)(2)T (b)(2))

= T (a) ◦χ T (b).
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For the converse direction we have A = H and the coaction is the coproduct of H. By
assumption we have a comodule superalgebra isomorphism T : Aη → Aχ . Let ρ : H → C

be defined by ρ := ε ◦T . Then ρ is unital, ρ(1) = 1. Furthermore, it is invertible with inverse
given by ρ−1 = ε ◦ T −1, and thus it is a 1-cochain on H. Since T is a comodule map we can
show using graded cocommutativity∑

ρ(a(1))a(2) =
∑

ε(T (a(1)))a(2) =
∑

a(1)ε(T (a(2)))

=
∑

T (a)(1)ε(T (a)(2)) = T (a).

That is, T is determined by ρ as in the proposition. We show that η and χ are cohomologous
through ρ, i.e. η = ∂ρ � χ :

η(a, b) =
∑

(−1)|a(1)||a(2)|+|a(1)||a(3)|+|a(2)||a(3)|η(a(1), b(1))ρ(a(2)b(2))ρ
−1(a(3)b(3))

=
∑

(−1)|a(1)||a(2)|+|a(1)||a(3)|+|a(2)||a(3)|ε ◦ T (η(a(1), b(1))a(2)b(2))ρ
−1(a(3)b(3))

=
∑

(−1)|b(1)||a(2)|ε ◦ T (a(1) ◦η b(1))ρ
−1(a(2)b(2))

=
∑

(−1)|b(1)||a(2)|ε(T (a(1)) ◦χ T (b(1)))ρ
−1(a(2)b(2))

=
∑

(−1)|b(2)||a(3)|ρ(a(1))ρ(b(1))ε(a(2) ◦χ b(2))ρ
−1(a(3)b(3))

=
∑

(−1)|b(1)||a(2)|∂ρ(a(1), b(1))χ(a(2), b(2)).

This completes the proof. �

Proof of lemma 3.3. We prove that the map µ : Z1 × N1 → C1 given by the convolution
product is bijective.

Let ρ ∈ C1. Define ζ : Sym(V ) → C as follows. Set ζ(1) = 1, set ζ(v) = ρ(v) for
v ∈ V and extend ζ to all of Sym(V ) as an algebra homomorphism ζ(a∨b) = ζ(a)ζ(b).
(Note that ζ is automatically graded since ρ is graded.) ζ has a convolution inverse
ζ−1(a) = ζ(γ (a)) and is thus a 1-cocycle. Now define the 1-cochain η := ζ−1 � ρ. Since
η(v) = ζ−1(1)ρ(v) + ζ−1(v)ρ(1) = ρ(v) − ρ(v) = 0 for all v ∈ V , η is in N1. By
construction, ρ = ζ � η and thus µ is surjective.

Now take ζ̃ ∈ Z1 and η̃ ∈ N1. Define ρ := ζ̃ � η̃ and construct as above ζ, η from
ρ. Since ρ(v) = ζ̃ (1)η̃(v) + ζ̃ (v)η̃(1) = ζ̃ (v) for v ∈ V we have by construction of ζ that
ζ(v) = ζ̃ (v) for v ∈ V . As both ζ and ζ̃ are algebra homomorphisms they must coincide.
Consequently η = ζ−1 � ρ = ζ̃−1 � ζ̃ � η̃ = η̃. This shows that µ is injective. �

Proof of lemma 3.4. We show that a 2-cocycle χ on Sym(V ) is a 2-coboundary if and only
if it is symmetric, i.e. χ(a, b) = (−1)|a||b|χ(b, a) for all a, b in Sym(V ).

Let χ be a 2-coboundary, then there is a 1-cochain ρ such that

χ(a, b) = ∂ρ(a, b) =
∑

ρ(a(1))ρ(b(1))ρ
−1(a(2)∨b(2)).

Since the symmetric product ∨ is graded commutative, the expression on the right is symmetric
and χ(a, b) = (−1)|a||b|χ(b, a).

For the reciprocal statement, suppose that χ is a symmetric 2-cocycle. We define a
1-cochain on S(V ) by induction on deg(v). Set ρ(1) = 1, ρ(v) = 0 for all v ∈ V , and
ρ(u∨v) = χ−1(u, v) for all u, v ∈ V (which is well defined because χ is symmetric).
Now assume that ρ is defined on all elements up to degree � n. For a, b ∈ Sym(V ) with
deg(a) + deg(b) = n + 1 and deg(a), deg(b) � 1 (for a or b of deg(0) what is to be shown
holds automatically), set

ρ(a∨b) =
∑

χ−1(a(1), b(1))ρ(a(2))ρ(b(2)). (37)
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Then ρ is well defined because χ−1 is symmetric, and therefore ρ(a∨b) = ρ((−1)|a||b|b∨a),
and because ρ(a∨(b∨c)) = ρ((a∨b)∨c) if deg(a) + deg(b) + deg(c) = n + 1 and
deg(a), deg(b), deg(c) � 1. To show the latter equality, we use equation (37), the 2-cocycle
condition (23) and coassociativity of the coproduct to write

ρ(a∨(b∨c)) =
∑

(−1)|c(1)||b(2)|χ−1(a(1), b(1)∨c(1))ρ(a(2))ρ(b(2)∨c(2))

=
∑

(−1)|c(1)||b(4)|+|c(2)||b(4)|+|b(1)||b(2)|+|c(1)||c(2)|χ−1(a(1)∨b(1), c(1))

×χ−1(a(2), b(2))χ(b(3), c(2))ρ(a(3))ρ(b(4)∨c(3))

=
∑

(−1)|b(1)||b(2)|χ−1(a(1)∨b(1), c(1))χ
−1(a(2), b(2))ρ(a(3))ρ(b(3))ρ(c(2))

=
∑

(−1)|b(1)||b(2)|χ−1(a(1)∨b(1), c(1))ρ(a(2)∨b(2))ρ(c(2))

= ρ((a∨b)∨c).

Finally, inverting (37) to obtain ρ−1(a∨b) = ∑
ρ−1(a(1))ρ

−1(b(1))χ(a(2), b(2)), we can easily
show that ∂ρ = χ . In fact

∂ρ(a, b) =
∑

ρ(a(1))ρ(b(1))ρ
−1(a(2)∨b(2))

=
∑

ρ(a(1))ρ(b(1))ρ
−1(a(2))ρ

−1(b(2))χ(a(3), b(3))

=
∑

ε(a(1))ε(b(1))χ(a(2), b(2)) = χ(a, b). �

Proof of lemma 3.5. We first consider an auxiliary lemma.

Lemma B.1. Let χ be a 2-cocycle. If χ is symmetric on V ⊗ V , then χ is symmetric on
Sym(V ) ⊗ Sym(V ), i.e. χ ∈ Z2

sym.

Proof. Let χ be a 2-cocycle such that χ(u, v) = (−1)|u||v|χ(v, u). We prove by induction
that χ ∈ Z2

sym. Suppose that χ is symmetric on all elements a ⊗ b with deg(a) + deg(b) � n,
and let deg(a) + deg(b) + deg(c) = n + 1, with deg(a), deg(b), deg(c) � 1. Using the graded
commutativity of the symmetric product ∨, the 2-cocycle condition (23) and the induction
hypothesis, we obtain

χ(a, b∨c) =
∑

(−1)|a(1)||a(2)|+|b(1)||b(2)|+|b(1)||b(3)|χ−1(b(1), c(1))χ(a(1), b(2))χ(a(2)∨b(3), c(2))

=
∑

(−1)|a(1)||a(2)|+|b(1)||b(2)|+|b(1)||b(3)|+|a(1)||b(2)|+|a(2)||b(3)|

×χ−1(b(1), c(1))χ(b(2), a(1))χ(b(3)∨a(2), c(2))

=
∑

(−1)|a(2)||b(2)|+|b(1)||b(2)|+|c(2)||c(3)|χ−1(b(1), c(1))χ(a(1), c(2))χ(b(2), a(2)∨c(3))

=
∑

(−1)|a(1)||c(2)|+|a(2)||b(2)|+|a(2)||c(3)|+|b(1)||b(2)|+|c(2)||c(3)|

×χ−1(b(1), c(1))χ(c(2), a(1))χ(b(2), c(3)∨a(2))

= (−1)|a||b∨c|χ(b∨c, a).

This completes the proof. �

We are now ready to prove the main statement that the map µ : B2 × R2
asym → Z2 given

by the convolution product is bijective.
Let χ be a 2-cocycle. Define the Laplace pairing λ by λ(u, v) := 1

2 (χ(u, v) −
(−1)|u||v|χ(v, u)) for all u, v in V extended to Sym(V ) by (1) and (2). λ is an antisymmetric
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Laplace pairing according to the definition (29). By lemma 3.2 λ is a 2-cocycle and
hence σ := χ � λ−1 is also a 2-cocycle. Note that the inverse of λ is the Laplace
pairing defined by λ−1(u, v) = −λ(u, v). Thus, σ evaluated on V ⊗ V yields
σ(u, v) = ∑

(−1)|v(1)||u(2)|χ(u(1), v(1))λ
−1(u(2), v(2)) = χ(u, v) − λ(u, v) = 1

2 (χ(u, v) +
(−1)|u||v|χ(v, u)). That is, σ is symmetric on V ⊗ V . By lemma B.1 this implies that σ

is symmetric on all of Sym(V ) and thus by lemma 3.4 a 2-coboundary. By construction
χ = σ � λ, i.e. χ can be written as a product of a 2-coboundary σ and an antisymmetric
Laplace pairing λ. Hence µ is surjective.

Now take σ̃ ∈ B2 and λ̃ ∈ R2
asym. Define the 2-cocycle χ := σ̃ � λ̃. Construct σ ∈ B2

and λ ∈ R2
asym out of χ as above. Then for u, v in V, χ(u, v) = ∑

(−1)|v(1)||u(2)|σ̃ (u(1),

v(1))λ̃(u(2), v(2)) = σ̃ (u, v) + λ̃(u, v). Hence λ(u, v) = 1
2 (χ(u, v) − (−1)|u||v|χ(v, u)) =

1
2 (σ̃ (u, v) + λ̃(u, v) − (−1)|u||v|(σ̃ (v, u) + λ̃(v, u))) = λ̃(u, v). We have used that λ̃ is
antisymmetric by assumption while σ̃ is symmetric by lemma 3.4. Since λ and λ̃ are Laplace
pairings coinciding on V ⊗V they must be identical. Consequently σ = χ�λ̃−1 = σ̃ �λ̃�λ̃−1 =
σ̃ . This shows that µ is injective. �
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